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a
In most approaches to Computer vision, an isportant preliminary

computation is the localization of discontinuities in image intensity.

This can be achieved b~ finding peaks in the first directional,.

derivative of intensity, or equivalently, zero—crossings In the second

directional derivative. The latter quantity may be obtained by
convolving the Image with a bar-shaped mask, which approximates the
second directional derivative at its particular scale. By using a

range of mask size s, one Can begin to deal with the wide range of
.scales over which changes take place in a natural image (see Marr,
1976, p. 488) . 0

These ideas begin to account, on purely information processing • —

grounds, for the presence of f reqsoney-tuned channels In early human
vision (Campbell ~ Robson,1968) . Recent work by Wilson b Gieze (1917)
shows that such channels can be realised by linear units with bar—
shaped receptive fields, reminiscent of the simple cells that Hubel ~
Wiesel (1962) have described. Marr ê Poggio’s (1971, 1979) recent
theory of stereopsis is, f or example, conceived within this framework,
and assumes that the elements that are matched between the two images
are equivalent to the zero-crossingS in bar-mask outputs. The object
of this note is to point out that very recent advances in inform tlon
theory provide fascinating additional theoretical support for this
framework.

I t  
J OThe advance In question is a theorem due to Logan (1977), who

showed that if a one-dimensional analytic function is (a) bandpass of

bandwidth one octave or less, and (b) has no free z.rois, t.•. complex C)
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1. The meaning of Logan’s (1971) theorem. (a) shows a stochastic
gaussian signal 1(x), band-limIted by w 24, and (c) exhibits the
result 4(z) of filtering (a) through an ideal one-octave bandpass

• fIlter. The modulus of Its transfer function is shown In (b). Since •

(c) has a bandwidth of one octave, and it has no zeros in common with
Its Hilbert transform, Logan’s theorem tells us that (C) is determined,up to a multiplicative constant, by its zero-crossings alone. The
aspect of Logan’s result that is important for this article is that
under the right conditions, zero-crossings alone are very rich in
Information.
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zeroes in common with &t3 Hu bert transfora, then the funct*on Is

completely determined (up to an overall multiplicative constant) by Its

(real) zero—c rossIngs (see figure 1). CondItion ~a) is critical, but

condition (b) can for practica) purposes be ignored, since it Is almost

always satisfied except by pathological signals.

If one tragsiøte s this resul t Into the context of early visual

processing, its meanang is this. We have already seen that the basic

idea, of using ;ero-crossings in bar-mask convolutions from which to

generate a primitive description of the image, has a strong physical

motivation. Logan’s result tells us that, if the bar—mask operators

are band-pass with ~ bandwidth of not more than one octave, then the

• zero—crossin g s alone are so rich in. information that they determine

essentIally completely the convolution values (taken along a scan—line

0 0 
perpendicular to the mask’s orientation).

Another basic question which Logan’s result nay illuminate is, why

should the channels used in early visual processing be orientation-

dependent? Why not compute one’s primitive description directly from

circularly symmetric masks, like the receptive fields of retinal

ganglion cells? Imagine that one wishe s to reconstruc t a two—

dimensional array fro, the zero-crossings along a family of scan-lines

that cover the plane. Logan’s resu1t~ tells us that this is in general 
0

impossible from the zero—crossings alone unless the array values along

each scan-line are bandpass with bandwidth less than an octave. It is

not enough that the two-dimensional array be bandpass in two dimensions

with bandwidth less than an octave ~as a r ing in the 
~~~ 

.~
) plane of C)
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width one octave). An image filtered through a (bandpass) bar-shaped

mask is bandpass on each scan-line perpendicular to the mask ’s

orientation, an image filtered through a (bandpass) circularly—

t symmetric mask is band—limited but not bandpass along any scan—line.

This follows from the fact that the Fourier transform along (for

• instance) the z-azis of an image filtered through a bandpass ‘r ings is

essentially the projection of the two-dimensional Fourier transform on

~ 
and is therefore not bandpass. We may conclude that a commitment

to one-dimensional techniques, (i.e., zero-crossings along scan-lines),

obliges one to use orientation—dependent masks. 0

0

This argument, however, gives us no clue about the nuaber of

(j) orientations that one should use. For reconstructing the i age, the

Logan approach provides a lower bound of two orientations, together

• with an adequate set of mask sizes (see figure 2).

In its extreme form, our thesis may be summarized as follows. In

order to construc t a faithful representation of the image using only
1 

~ zero-crossings, It is necessary to filter it through a set of

independent bandpass channels with one octave bandwidth. Hence the

00 masks (or receptive fields) that approximate the second directional

derivative operator should, as closely as possible, be bandpass with

one octave bandwidth. Such a system would allow the recovery of sharp

• Intensity changes directly from the mask outputs, while providing the

necessary basis for the recovery of arbitrar y intensity profiles.

What experimental evidence Is there that our thesis is relevant to

• ~~
- • • biological visual systems? As we mentioned earlier, Logan ’s free zero
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• 2. On the left are shown bar-shaped masks at the vertical and
horizontal orientations, and on the right, the amplitude of their

••. (idealized) transfer functions. The bandwidth shown here Is one
octave, the maximum value for which Logan’s theorem applies. (In 0

practise, an ideal one-octave bandwidth requires side-lobes in the
“receptive field”.) If for each mask, zero-crossings are found along
scan-lines lying perpendicular to the mask’s orientation, these zero—
crossings contain full informatIon about that part of the Image whose
spectrum falls within the shaded region (on the right) of the Fourier
plane. The remaining regions of the Fourier plane can be covered by
similar masks of different sizes.

In terestingly, if  one uses masks constructed from the difference of
two gaussian curves, their Fourier transforms behave like ,2, f o r
values of • that are small compared with .. In other words, they
approximate a second derivative operator.
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condition will almost always be satisfied in practice. The critIcal

condition concerns the bandwidth. There is ample evidence for the

existence in the human visual system of independent, spatial—frequency—

tuned bandpass channels, of , about one-octave bandwidth. Precise
• estimates of the bandwidth vary considerably, however, ranging f r o m

very narrow (0. 5 octaves, Sachs, Narhiias ~ Robson 1971) to very large

(Kul ikowski E~ King-Smith 1973; Shapley ~ Tolburst 1973) values. More

recent approaches based on spatial probability summation allow most of

the existing psychophysical data to be fitted using medium bandwidth

• channels. Graham’s (1977, Figure 4) estimate of channel bandwidth

half-peak sensitivity is about 0.5 octaves, whereas the espec ially

O 
(~) 

convincing estimates of Wilson 4 Gieze (1977) hover around an octave

• and a half (see also Legge 1978). In any case, the channels are not the

ideal one-octave bandpass filters that Logan’s theorem requires. There

is unfortunately ljlttle available information about channel

characteristics in their normal (suprathreshold) conditions, although

there are hints that their bandwidth may then be somewhat narrower

(Cowan 1917, Figure A12). Furthermore, it seems likely that Logan’s

one-octave condition say be relaxed. (The average failure rate at 1.5

octaves is probably around 8%). In any case, it becomes of considerable

interest to determine the channel bandwidths under suprathreshold

conditions.
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